
RoboCup Logistics League
Graz Robust and Intelligent Production System GRIPS

Leo Fürbaß, Lukas Knoflach, Peter Kohout, Marco De Bortoli,
Stefan Moser, Gerald Steinbauer-Wagner, Anna Masiero,

Tobias Frick, Martin Nagele, David Beikircher, Thomas Kernbauer

Graz University of Technology

Abstract. The present paper presents team GRIPS (Graz Robust and Intelligent
Production System) and its approaches to the challenges in the RoboCup Lo-
gistics League 2023. Festo’s Robotino, a customized additional construction and
some further hardware, such as laser scanners, cameras, PC, and PLC, are used as
a hardware platform. The software architecture is built in a multi-layer format. A
scheduler/planner functions as a central decision-making instance for all robots at
the top player. Beneath this layer, various BehaviourTrees are used for individual
decisions during an action. At the lowest level, the robot operating system (ROS)
executes the tasks assigned to the robot by the top layer.

1 Introduction

The main aim of the RoboCup Logistics League is to promote research in automated
and flexible production and serves as a testbed for methods dealing with smart produc-
tion. For this purpose, the league’s competition simulates a smart factory in which dif-
ferent products must be manufactured in several steps at different production machines.
During production, the various machines must be supplied with blanks and resources
required for product manufacturing. A so-called RefBox orders products in a random
order and thus simulates demands for products. All transportation tasks for products and
intermediate products are performed by a fleet of autonomous robots. As this setting in-
volves continuous changing of the product demands, the autonomous robots simulate
the logistics challenges in future production systems. Therefore, the RoboCup Logistics
League is an ideal testbed for innovative planning/scheduling algorithms and control
methods for fleets of robots.

Team GRIPS was founded in 2015 as part of the practical course ”Construction of
Mobile Robots” held at Graz University of Technology. Students in this class have to
find solutions for different challenges relevant to the Robocup Logistics League. When
GRIPS was first founded, it already participated in the RoboCup World Cup which in
2016 was held in Leipzig, Germany (team description paper [?]). GRIPS finished in
third place in its first year of participation and was thus voted rookie of the year. At
the RoboCup 2017 held in Nagoya, GRIPS achieved second place. In 2018, GRIPS
has already participated at the RoboCup German Open in Magdeburg, Germany and
finished in second place. After winning the thrilling finals at the RoboCup 2018 in
Montreal, Canada, GRIPS earned its first world champion title. At the RoboCup 2019

2 Authors Suppressed Due to Excessive Length

in Sydney GRIPS achieved the second place. 2022 GRIPS won the RoboCup German
Open in Aachen and came in second at the RoboCup in Bangkok.

The following section of this paper describe the hardware modifications performed
on the Robotino and any additional hardware used. Section 3 explores the algorithms
and software architecture implemented on the configured hardware platform. The next
section briefly discusses the overall mission strategy. In Section 5 the implemented
development process are presented. The next section bridges this content to current
research at the institute. Finally, this paper concludes with Section 7.

2 Hardware

GRIPS uses a multi-layer system architecture (see Fig. 1). An external PC acts as a so-
called teamserver which is used to coordinate the autonomous robots by assigning tasks
to them. The robotic base we are using is Festo’s Robotino [?] (see Fig. 2b). The robot
team consists of the three robots allowed per team according to the rulebook. All three
robots are identical in terms of hardware and are equipped with a customized construc-
tion to achieve the correct height for the mounted gripper in order to be able to grab
the products from the conveyors and shelves. Furthermore, we equipped the Robotinos
with an additional external computer to improve computational power. For localization
and navigation a Sick TIM551 laser scanner is used. Furthermore, we mounted a front
facing camera on all robots to detect the machines’ AR-tags.

A 3-axis gripper constructed with Festo parts is used for grabbing and delivering
the products. There are 3 degrees of freedom:

– z-Axis: Vertical movement of the gripper
– r-Axis: Linear axis for moving the gripper forward and backward
– ϕ-Axis: Rotational axis around the robot center

We use two Pepperl+Fuchs short-range laser distance sensors for detecting the conveyor
belt and the products. One is mounted front-facing for detecting the products, and one is
mounted bottom-facing for detecting the conveyor belts. A Beckhoff PLC with various
I/O extension cards reads the laser distance sensor values and controls the gripper axis.

A network router and a switch connect all these network devices and provide reli-
able WiFi capabilities for the robots. The used equipment is listed in Table 1.

3 Software

Following the idea of a three-layer architecture [?], the software is structured (as de-
scribed in [?]) as follows: scheduler/planner, mid-level control and low-level. We in-
troduced a strict communication scheme where only adjacent layers communicate with
each other to achieve an increasing abstraction of the real world from layer to layer.
Lower layers provide functionality to the higher layers (see Fig. 2a).

The high-level is responsible for coordinating the robots to achieve a common goal.
It is also in charge of distributing tasks to the robots and to ensure that two robots do
not use the same resource at the same time. Thus, the high-level needs to have global

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 3

Teamserver

Robot 1 Robot 2 Robot 3

Local Knowledge

Global Knowledge

Fig. 1: System architecture used in our approach. The teamserver holds global knowl-
edge of the game state while each robot only possesses local knowledge.

Table 1: Hardware components used in our approach.
Component Quantity Description
Robotino 3 3 Basis of all three robots.
Intel NUC 3 Additional computation device on all three robots.

Sick TIM551 3 Laserscanner for robot navigation.
Linksys Router 4 Network connections for all three robots and team-

server.
Axis Camera 3 Camera used for AR tag detection.

3-axis Festo Gripper 3 Gripper for retrieving and delivering products.
Beckhoff PLC CX9020 3 PLC for controlling the gripper and connecting the

laser distance sensors.
Pepperl+Fuchs Distance Sensor 6 Laser distance sensor used for conveyor and product

detection

4 Authors Suppressed Due to Excessive Length

knowledge of the game state. As can be seen in Fig. 1, the high-level is running on a
dedicated PC.

The mid-level controls the individual robots, i.e. the mid-level plans the actions
required to finish the tasks assigned to the robot by the high-level. Additionally, the
mid-level is responsible for rectifying faults in the task execution as well as possible for
the robot to resolve the problem locally by the respective robot.

The low-level is responsible for executing primitive actions. These actions range
from detecting the orientation of the machine to moving between way-points or opening
the gripper. This level is the most reactive one and is the only level which performs near
real-time activities.

Each level will be described in more detail in the remaining subsections of this
section.

3.1 High-Level Planning and Execution

For the high-level task management, we developed a Planning and Dispatching Frame-
work implementing a centralized control strategy for multi-agent system in a dynamic
domain. It is based on three main components: (1) a Goal Reasoner, (2) a Planner, and
(3) a Dispatching and Monitoring system. In Figure 3, the interaction between the com-
ponents is shown . The Dispatching and Monitoring component plays the role of the
main controller that invokes the Goal Reasoner, and consequently the planner, and exe-
cutes the obtained plan. The plan execution is constantly monitored for issues that may
require a regeneration of the goals or the plan, e.g. failed actions or deadline violations.

Modeling and Planning The planner is responsible for finding a plan to achieve the
goals selected by the Goal Reasoner while minimizing its makespawn. The Goal Rea-
soner commits the selected goals to the planner. The planning process is performed
using the temporal planner Optic [?] that provides a considerable set of features from
PDDL 2.1 [?], like handling of time, action concurrency, and temporal constraints. For
an introduction to temporal planning, we refer to [?]. We favor temporal planning over
other approaches, like HTNs, as it is able to find better plans in terms of makespawn.
The latter is needed to be able to serve many orders. Moreover, temporal planning makes
handling temporal deadlines and coordinating multiple agents easier. The downside is
the high computational cost of the planning process. In order to address this issue for
the RCLL domain, we simplified the domain model and introduced a corresponding
goal selection. The domain is modeled in PDDL by representing the two possible inter-
actions with a station as abstract action: get and delivery. The former is used to retrieve
a workpiece from a station after it has been processed, while the latter is needed to
deliver the workpiece to a station for processing. An example is the action deliverPro-
ductToCS(r cs p color). This action models the delivery of a product to a cap station, in
order to mount a cap. The parameters include the robot r performing the action, the cap
station cs, the partial product p, and the color of the requested cap color. The result of
the planning process is a temporal plan, which is represented by the schedule σ , formed
by a set of triples 〈a, ta,da〉, where a is an action, ta is the time when the action a needs
to be started, and da is the duration of the action. Listing 1.1 shows the plan to deliver a
simple product in the RCLL domain.

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 5

(a) Overview of the software architecture. (b) Adapted Robotino 3.

Fig. 2: Used software architecture and hardware setup.

DISPATCHING
AND MONITORING

GOAL
REASONER PLANNER

KNOWLEGE
BASE

All Goals

(re)planning

Selected Goals

Plan
Update

Task Feedback

Fig. 3: Planning and Dispatching Architecture.

6 Authors Suppressed Due to Excessive Length

Listing 1.1: Temporal plan a C0 Product. Parameters (except for the agent) have been
omitted for better readability.
0 . 0 0 0 : (getBaseFromBS r1) [5 1 . 0 0 0]
0 . 0 0 0 : (bufferCapBaseFromCS r2) [8 9 . 0 0 0]
8 9 . 0 0 1 : (getBaseFromCS r2) [5 2 . 0 0 0]
1 4 1 . 0 0 2 : (d e l i v e r P r o d u c t t o C S r1) [8 5 . 0 0 0]
2 2 6 . 0 0 3 : (ge tProductFromCS r1) [5 2 . 0 0 0]
2 7 8 . 0 0 4 : (d e l i v e r P r o d u c t T o D S r1) [7 3 . 0 0 0]

This representation poorly supports action dispatching, since it is not easy to de-
termine how delays, occurred in the execution of an action, affect the other triples of
the plan. To address this, we represent the plan as a temporal graph (Simple Temporal
Network), which encodes the temporal dependencies and the partial order between the
actions, without constraining the start of actions to specific time points. It can be com-
puted from the temporal plan and the planning domain. A temporal graph G is a directed
graph G = (V,E). The set of vertices V represents time points, like starting or ending of
an action, while each edge (or arc) e∈ E is a pair of vertices (v1,v2)∈V ×V . The func-
tion Λ : E→N×{N,∞} labels each edge with a pair of natural numbers [lb,ub] or with
[lb,+∞). In a label [lb,ub] for an arc (v1,v2), lb and up express the lower and upper
bound of time difference between the time points associated to v1 and v2. This allows
to express temporal constraints between time points. The fact that (v1,v2) is a directed
edge encodes a partial order relation from v1 to v2, stating that v2 can not happen before
v1. In its less restrictive form, a label [0,+∞) encodes just a partial order relation from
v1 and v2, without imposing any temporal constraint. Given an action a with estimated
duration da, we denote with as and ae the two vertices representing start and end of a.
An edge labeled [da,da] is created from as to ae. Figure 4 shows the temporal graph
equivalent to the plan in Listing 1.1.

Fig. 4: Temporal graph for the plan shown in Listing 1.1.

An accurate estimation of actions duration is crucial, both for appropriate plan-
ning and monitoring plan execution. Since the temporal planner tries to optimize the

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 7

makespawn of the plan, the plan is considered optimal in reality only if the estimated
duration of an action is close to the real execution time. In our domain every action
models a specific interaction between a robot and a station. For performance reasons,
we do not model the actions to move a robot between two locations. As a consequence,
in every action we need to consider the time needed for the robot to move from its po-
sition to the involved station. Each action is thus characterized by two cost (or time)
components: (1) the movement costs and the (2) interaction costs. The interaction costs
have been estimated for each action empirically. We determined the average duration
during several invocations of the action. In order to estimate the duration of the move-
ment included in the actions, we precompute a matrix for each setup (variable location
of stations), containing all the estimated costs for traveling between each pair of loca-
tions. Since the same path finding algorithm is used as in the robot’s navigation skill to
find the best path between locations, the estimated times are close to the real ones. To
make the estimation even more precise, we are also considering orientation costs at the
start and at the end of each movement action. By adopting this procedure we achieve
an accurate estimation of actions duration that is incorporated into the PDDL domain.

Goal Reasoning and Multi-Thread Planning Since we are interested in dynamic
domains, the planning process needs to be fast, in order to be able to react to changes
and opportunities in the environment in time. For this reason, the Goal Reasoner selects
the most rewarding set of goals the planner may be able to obtain a plan for with a given
time budget (e.g., 1 min.). In the RCLL domain a single goal is an individual order
(product configuration and delivery time). In general, planning for all received orders
is not possible within the given time. Thus, we follow the idea of partial satisfactory
planning [?]. The Goal Reasoner solves a relaxed version of the RCLL domain, where
it is assumed that each goal can be achieved by a single agent individually, without
considering cooperation or management of resources. In this simple setting the set of
processing steps needed for goal g are known in advance. Using duration estimation
of actions described in the previous section, we can formulate the selection as a simple
task allocation problem with an overall deadline. We denote with M(g) the makespan of
g (sum of process steps) and with R(g) the reward for achieving it. G denotes the set of
all possible goals, SG ⊆ G the set of the selected goals. DL is the total remaining time
for achieving said goals. Solving the relaxed problem means to find a task allocation
τ , formed by a set of allocations 〈ri,g j〉 (robot ri works on goal g j ∈ SG) such that
∀ri ∑〈ri,g j〉∈τ M(g j) < DL and max∑g j∈SG R(g j). We employ the ASP solver CLINGO
[?] to compute this optimization task.

A drawback of this goal selection heuristic is that the solution of the relaxed problem
can be too optimistic. In this case, the planner is not able to find a plan achieving all the
selected goals while respecting the given deadlines. To mitigate this we exploit parallel
planning over multiple sets of goals. The sets are the selected goal set as well as sets
obtained by transforming it by either dropping goals (reducing the number of goals) or
replacing goals with less complex ones. For each goal set, a planning thread is ran for
1 minute. The rational behind this approach is that in general it is more likely to find a
feasible plan for simplified goal sets with a bounded time budget. Among the returned

8 Authors Suppressed Due to Excessive Length

feasible plans, we select and dispatch the one with the highest reward. Thus, we trade a
higher reward for a better response time.

Dispatching and Monitoring The task of this module is to dispatch the actions of
the obtained plan in time, to monitor its proper execution (in terms of state and time),
and to initiate replanning when necessary. The following three events may trigger re-
planning: (1) failed execution of a task, (2) successful execution of the actual plan, (3)
impossibility to achieve a goal in time.

In ROSPlan a temporal graph is dispatched starting from the root node and travers-
ing its outgoing edges, respecting their lower and upper bound [lb,ub]. A new node can
only be dispatched after all its incoming edges have been traversed successfully. For
instance, looking at Figure 4, we can see that action 4 (deliverProducttoCS) must be
preceded by action 3 and 2. However, action 1 can be executed in parallel to actions 2
and 3. In this work, we use a slightly different approach to check the temporal constraint
on the edges, in order to allow an earlier detection of deadline violations. As can be seen
in Figure 4, there are two types of edges: (1) action duration edges [da,da] between start
and end of the action a, and (2) partial order edges [0,+∞) between the end of an action
and the start of the following one. Nodes corresponding to start actions are dispatched
by sending the corresponding action to the robot for execution, while end nodes are
dispatched when a feedback for the successful execution of the corresponding action
is received. The partial order encoded through the edges is ensured by the dispatch-
ing. Unfortunately, it can not be expected that the execution in the real world perfectly
respects the temporal constraint [da,da]. The approach presented in [?] propagates the
detected delay by fixing the execution times of already executed actions and updating
(by constraint propagation) the remaining deadlines. In our approach, violations of such
edges are tolerated, since our early deadline detection strategy immediately recognizes
if such delays will cause a deadline violation in the future. Thus, we adopted the op-
posite approach, propagating back the deadlines from the goal nodes to the rest of the
graph, labeling each node with a relative deadline rdl(x). This value represents the lat-
est time point we can dispatch that node without violating the deadline x. Starting from
the goal vertices, we calculate the relative deadlines rdl of each vertex by traversing the
edges in the opposite direction, subtracting the lower bound of the edge at each step. If
there are more paths from a normal vertex to a goal vertex, we keep the more restrictive
relative deadline. Every time a node is dispatched, we check if all its relative deadlines
are respected, otherwise we trigger replanning. The advantage is that constraint propa-
gation is performed only once, instead of every time a delay is detected. In Figure 5 a
partial result of this approach applied to the graph from Figure 4 is shown.

Fig. 5: The deadline propagation process on a part of the graph in Figure 4.

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 9

Teamserver Visualization Since every team uses three robots and the seven machines
provided in the production hall during the RCLL competitions, it is hard to observe
the tasks of robots and the current states of machines simultaneously. However, know-
ing what a robot is currently doing or planning to do is essential in many situations
to foresee errors or possible problems. Issues, such as bad localization or wrong task
execution, could disrupt the manufacturing process. If we are able to foresee such is-
sues, maintenance can be executed in an earlier stage and thus avoid the occurence of
errors beforehand. As a solution, we developed a Angular website to visualize informa-
tion on the robots and machines. For debugging it is also possible to manually send all
the commands to a Robot. The information about each robot contains its state, current
task, next task, current product and many more. The machines information contains the
current state, whether it is currently being used by a robot, etc. As our team server uses
the Spring framework, which is based on a model-view-control architecture and already
supports web developement, the creation of a website skeleton linked to our team server
was not a difficult task. The Angular UI uses a post http endpoint to collect the data.
We also periodically save the visualization data during a game, so that it is possible to
step through a game afterwards.

3.2 Mid-Level Control

The mid-level control is based on BehaviourTrees. We use the BehaviourTreeC++ li-
brary that is already available for ros noetic [?]. BehaviourTree are used to model com-
plex behaviours, but with them it is simpler than with a Finite State Machine. The
midlevel control consits of two nodes, first the gateway node which is used to com-
municate with the high level control. Right now there are two implementations, the
prs gateway node and the fake gateway node. The first is used if the tasks which are
received are send from the high level control. The second node is used via the com-
mand line, it is used for debugging. Note that via the fake gateway node is is possible
to execute more trivial tasks, like aligning to a machine.

An example BehaviorTree that is used to navigate to a pre-defined waypoint can
be seen in figure 6. This example should illustrate some functionalities and the clearly
visible control flow. All nodes of the BehaviorTree are executed from left to right. Some
nodes, so-called control-flow nodes, have defined behaviors, like the nodes Sequence,
Fallback, ReactiveSequence and RetryUntilSuccessful. The other nodes are the actual
actions which are performed. Thus, the basic procedure of the navigation is clearly
visible from naming of the nodes. After the waypoint is read, it is checked if the robots
is already at the specified waypoint. If not, a goal with the waypoint is sent to the move
base. Afterwards, twice a second it is checked if the robot is still moving. The robot may
have stopped moving because of an error within the move-base or because of a defined
stop-behavior. Finally, it is checked if the robot successfully reached the waypoint. If
not, the whole navigation procedure fails and is retried until it returns success (amount
of retries is specified in control-flow node RetryUntilSuccessful).

10 Authors Suppressed Due to Excessive Length

Fig. 6: Sample behaviour tree for moving the robot.

3.3 Low-Level

The lowest layer is mainly based on the open robot operating system (ROS [?]). Here,
basic atomic actions are advertised to the layer above as a ROS action server. Different
services are advertised here, e.g. opening/closing the gripper, locally navigating to a
machine, aligning in front of a machine and so on. Performing these actions, all the error
detection and a possible error recovery is made by the ROS service. In the following
part of this subsection we will briefly discuss the most important parts of the low-level
functions.

Way-Point Navigation In order to retrieve or deliver objects, the robot moves between
defined way-points. These way-points are stored in the mid-level as abstract identi-
fiers e.g. a defined zone of the playing field is stored as M Z22. In order to move to
a given way-point, the low-level uses a table to look up the real world coordinates for
the abstract identifier and afterwards plan to move to this way-point. To move to the
given coordinates, we use the move base package of ROS [?]. This package comprises
a global planner that uses the map to find a path between the current robot position and
the desired final position. In order to avoid the different production machines, these ma-
chines are added to the navigation map. Furthermore, after finding a global plan a local
planner is used to move along the path by considering and avoiding detected objects on
the planned path.

Conveyor Alignment During the production phase the robot needs to deliver and re-
trieve products from the conveyor multiple times. This is done through a way-point that
is in close proximity to the desired conveyor. Thus, a robot is able to move near the

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 11

intended machine. After that, the QR-Code and the laser scanner is used to approach
the machine and to align the robot close to the conveyor belt.

Gripper control The gripper control software is implemented directly on the PLC us-
ing Structure Text (ST) as programming language. It exposes an interface to the gripper
ROS-node for accepting commands and sending sensor measurements. A command
for the gripper can be fine-grained like opening or closing the gripper for grabbing a
product, but the interface also allows for more complex commands. A more complex
command sequence is for example grabbing a product from the shelf and directly de-
livering it to the input of the Cap Station.

The recognition of the product and conveyor belt positions is implemented on the
PLC. By moving the r-axis and ϕ-axis along a linear path and simultaneously storing
the values of the short-range laser sensors we get a point array of gripper positions and
distance values. For scanning the product position on the conveyor belt at the machine
output a front facing sensor is used. The gripper moves along a parallel path in front
of the machine. For scanning the conveyor belt position at the machine input we use a
bottom-facing sensor. The gripper moves along a linear path above the conveyor belt,
to scan the characteristic shape of the conveyor. Using the sensor value point array and
taking into account the expected dimensions of a product or conveyor belt the exact
location of the product or conveyor can be calculated.

3.4 Communication

The communication between the scheduler/planner and the mid-level control is done
in a similar way as the communication with the referee box where serialized messages
generated with the open protocol buffer data format (protobuf) developed by Google
are used. Also, the internal communication in the mid-layer is implemented using such
serialized streams since the standard communication interface of Open PRS has some
limitations that are mitigated by our implementation. The mid-level control commu-
nicates with the low-level using so-called ROS action servers, i.e. the low-level offers
actions that can be triggered by the mid-layer. Implementing ROS action servers allows
fetching the current status of the action during execution as well as a return status after
the execution is finished or failed. The communication between ROS and the gripper
PLC is implemented with the OPC UA protocol. The PLC acts as OPC UA server, and
on the ROS side we use the Open62541 library for implementing an OPC UA client. Via
the OPC UA protocol the sensor values measured by the PLC are exposed to low-level,
and the low-level can send commands to the gripper.

4 Mission Strategy

The game can be split up into two main phases, exploration and production.
In the production phase, the Planning and Execution framework discussed in Section
3.1 is used to maximize the number of achieved product in the given time window.
In the exploration phase each robot will be in charge of exploring one column of our
half of the field. To do so, the robot moves on the field and searches for unseen QR-tags.

12 Authors Suppressed Due to Excessive Length

Whenever one is found, the robot moves to the corresponding machine and measures
the machine’s orientation using the laser scanner. The collected information is then
sent to the high-level Control. The scheduler/planner gathers all reports from the robots
with additional information about the certainty of these observations. Having multiple
observations with given probabilities, a safe report can be sent to the referee box to
avoid negative points resulting from wrong reports. Exploring only one half of the field
is sufficient due to the symmetry of the game field. Currently we develop a constraint
based consistency check for the reported machines and zones.

5 Development

In order to build up a robust system during our development, we use a continuous
integration [?] server that executes builds as well as unit and integration tests. These
integration tests are executed with the help of the Gazebo simulation that is provided
by BBUnits and the Carologistics team [?,?]. Through this continuous testing software
faults and integration problems can be found more easily. To encourage other teams to
follow the idea of continuous integration, we plan to release the software to perform
these tests under an open source license after it has reached a certain level of maturity.

6 Influence Through Current Research

Within the focus of the current research at the Institute for Software Technology (IST)
hosting the team is the usage of a model-driven approach to develop dependable au-
tonomous robots. The idea is to use models as a central part of the developing process to
automatically test during software development and to diagnose the system at runtime.
These processes should be automated as much as possible transforming information
such as requirements to models automatically or by reusing existing models [?,?]. This
approach has already been shown to be applicable for an industrial use case. Thus, we
hope that this approach also results in a robust system for the logistic league.

Furthermore, current research is done in order to design an agent architecture which
allows a model driven approach to be easily integrated into a robotic system. This ar-
chitecture should allow a robotic system to be more dependable and thus run for long
periods of time. We expect that the result of this research is of special interest for the
logistics league as this properties are of high interest for smart production use cases.

In the past we have investigated different high-level approaches to control the robot
fleet together with the Carologistics team [?]. The high-level approach evaluated was
based on YAGI (Yet Another Golog Interpreter), which is an implementation based on
the ideas of the logic-based agent control language GOLOG. YAGI allows imperative
as well as declarative parts to be used; thus, programming and planning can be balanced
between ease of use and performance.

Then we shifted the focus on temporal planning systems, which are able to further
optimize the returned plan in a multi-agent systems where deadlines are involved.

RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS 13

7 Conclusion

In order to get a global view of the current game state we use a central planning and
scheduling instance that distributes the robot’s tasks through an auctioning system. The
robots use a BDI system in order to execute the tasks in a reliable and reactive manner.
Additionally, the robots will be observed during run-time in order to detect faults and
allow a fast recovery from failures. The robotic base we use for our robots is Festo’s
Robotino 3 which was modified such that the robot is capable of fulfilling all necessary
tasks. Based on the research performed at the Institute for Software Technology at Graz
University of Technology, we expect to provide the league with new ideas, to design
more dependable systems.

Conformity with the Rules We hereby declare that our presented hardware and software
architecture satisfies all the requirements stated in the RoboCup Logistics Rulebook
2019 (published April 12, 2019).

References

1. Haas, S., Keskic, D., Mühlbacher, C., Steinbauer, G., Ulz, T., Wallner, M.: Robocup logistics
league tdp graz robust and intelligent production system grips. (2016)

2. Karras, U., Pensky, D., Rojas, O.: Mobile robotics in education and research of logistics.
In: IROS 2011–Workshop on Metrics and Methodologies for Autonomous Robot Teams in
Logistics. (2011)

3. Gat, E., et al.: On three-layer architectures. Artificial intelligence and mobile robots 195
(1998) 210

4. Wallner, M., Muehlbacher, C., Steinbauer, G., Haas, S., Ulz, T., Ludwiger, J.: A robust
and flexible software architecture for autonomous robots in the context of industrie 4.0. In:
Austrian Robotics Workshop. (2017) 67–73

5. Benton, J., Coles, A., Coles, A.: Temporal planning with preferences and time-dependent
continuous costs. Proceedings of the International Conference on Automated Planning and
Scheduling 22(1) (May 2012) 2–10

6. Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains.
J. Artif. Intell. Res. (JAIR) 20 (12 2003) 61–124

7. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

8. Van Den Briel, M., Sanchez, R., Do, M., Kambhampati, S.: Effective approaches for partial
satisfaction (over-subscription) planning. In: Proceedings of the National Conference on
Artificial Intelligence (AAAI). (2004) 562–569

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo= asp+ control. arXiv preprint
arXiv:1405.3694 (2014)

10. Castillo, L., Fdez-Olivares, J., González-Muñoz, A.: A temporal constraint network based
temporal planner. (01 2002)

11. Faconti, D.: Models and tools to design robotic behaviors. (2019)
12. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:

Ros: an open-source robot operating system. In: ICRA workshop on open source software.
Volume 3. (2009) 5

13. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon:
Robust navigation in an indoor office environment. In: International Conference on Robotics
and Automation. (2010)

14 Authors Suppressed Due to Excessive Length

14. Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality
and reducing risk. Pearson Education (2007)

15. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the robocup logistics league with
real-world environment agency and multi-level abstraction. In: RoboCup 2014: Robot World
Cup XVIII. Springer (2014) 220–232

16. Niemueller, T., Reuter, S., Ewert, D., Ferrein, A., Jeschke, S., Lakemeyer, G.: Decisive
factors for the success of the carologistics robocup team in the robocup logistics league
2014. In: RoboCup 2014: Robot World Cup XVIII. Springer (2014) 155–167

17. Simón, J.S., Mühlbacher, C., Steinbauer, G.: Automatic model generation to diagnose au-
tonomous systems. In: Proceedings of the 26th International Workshop on Principles of
Diagnosis (DX-2015) co-located with 9th IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes (Safeprocess 2015), Paris, France, August 31 - September
3, 2015. (2015) 153–158

18. Mühlbacher, C., Gspandl, S., Reip, M., Steinbauer, G.: Improving dependability of industrial
transport robots using model-based techniques. In: Robotics and Automation (ICRA), 2016
IEEE International Conference on, IEEE (2016) 3133–3140

19. Ferrein, A., Maier, C., Mühlbacher, C., Niemueller, T., Steinbauer, G., Vassos, S.: Con-
trolling logistics robots with the action-based language yagi. In: IROS Workshop on Taks
Planning for Intelligent Robots in Service and Manufacturing. (2015)

	RoboCup Logistics League Graz Robust and Intelligent Production System GRIPS

