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Abstract. The Carologistics team participates in the RoboCup Logis-
tics League for the seventh year. The RCLL requires precise vision,
manipulation and path planning, as well as complex high-level decision
making and multi-robot coordination. We outline our approach with an
emphasis on recent modifications to those components.

The team members in 2018 are David Bosen, Christoph Gollok, Mostafa
Gomaa, Daniel Habering, Till Hofmann, Nicolas Limpert, Sebastian Schönitz,
Morian Sonnet, Carsten Stoffels, and Tarik Viehmann.

This paper is based on the last year’s team description [1].

1 Introduction

The Carologistics RoboCup Team is a cooperation of the Knowledge-Based Sys-
tems Group, the Cybernetics Lab IMA & IfU (both RWTH Aachen University),
and the MASCOR Institute (FH Aachen University of Applied Sciences). The
team was initiated in 2012. Doctoral, master, and bachelor students of all three
partners participate in the project and bring in their specific strengths tack-
ling the various aspects of the RoboCup Logistics League (RCLL): designing
hardware modifications, developing functional software components, system in-
tegration, and high-level control of a group of mobile robots. Our approach to the
league’s challenges is based on a distributed system where robots are individual
autonomous agents that coordinate themselves by communicating information
about the environment as well as their intended actions.

Our team has participated in RoboCup 2012–2017 and the RoboCup Ger-
man Open (GO) 2013–2018. We were able to win the GO 2014-2018 as well as
the RoboCup 2014 thru 2017 demonstrating flexible task coordination, robust
collision avoidance and self-localization through an easily maintainable and ex-
tensible framework architecture. We have publicly released our software stack in
2014, 2015 and 20164 [2].

In the following we will describe some of the challenges of the RCLL with a
focus on the changes introduced in 2018. In Section 2 we give an overview of the
Carologistics platform and describe how we adapted the platform in the past

4 Software stack available at https://www.fawkesrobotics.org/projects/
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year. We continue describing the changes to behavior components in Section 4
and our continued involvement for advancing the RCLL before concluding in
Section 6.

1.1 RoboCup Logistics League 2018

Fig. 1. The Storage Sta-
tion [3]

As in previous years, the goal is to maintain and op-
timize the material flow in a simplified Smart Factory
scenario. Two competing groups of up to three robots
each use a set of exclusive machines spread over a
common playing field to produce and deliver products
(cf. [4,5,6]). After the league switched from purely sym-
bolic production to Festo’s physical Modular Produc-
tion System (MPS) in 2015 [5], the rules and field layout
have been incrementally refined to focus on challenges
that are relevant to the Industry 4.0 movement [7].

For 2018, only minor changes have been brought to
the league to allow the teams to stabilize and incre-
mentally improve their performance. After the Storage
Station was added in 2017, we expect to use the stor-
age station to fetch a pre-produced C0 product, which
allows the fulfillment of a product with less effort, but
also with lower reward.

2 The Carologistics Platform

The standard robot platform of this league is the
Robotino by Festo Didactic [8]. The Robotino is developed for research and
education and features omni-directional locomotion, a gyroscope and webcam,
infrared distance sensors, and bumpers. The teams may equip the robot with ad-
ditional sensors and computation devices as well as a gripper device for product
handling.

2.1 Hardware System

Our current robot system is based on the Robotino 3. The modified Robotino
used by the Carologistics RoboCup team is shown in Figure 2 and features an ad-
ditional webcam to identify machine markers, a RealSense depth camera to rec-
ognize the conveyor belt, and two Sick laser range finders. We use a forward fac-
ing Sick TiM571 and a tilted backwards facing Sick TiM551 laser scanner for col-
lision avoidance and self-localization. The TiM571 has a scanning range of 25 m
(10 m for the TiM551) at a resolution of 1/3 degrees (1 degree for the TiM551).



Fig. 2. Carologistics
Robotino 2016 [9].

An additional laptop increases the computation power
and allows for more elaborate methods for self-
localization, computer vision, and reasoning.

Several parts were custom-made for our robot plat-
form. As described in detail in the next section, we use
a custom-made gripper and 3D-printed parts for product
handling.

2.2 Mechanical Adaptations

This year, we are working on a new gripping system that
is shown in Figure 3. In the past we had to move the
whole robot to correct a lateral offset between the gripper
and the conveyor belt. This approach has at least two
downsides. Firstly, we can only consider motion relative

to the last known pose calculated by the odometry, as a global localization is
unreliable right in front of the MPS. Secondly, the motors of the Robotino only
allow motions with a certain speed threshold. This prevents to perform small
corrections of the gripper pose within millimeters, so we had to work with rather
large tolerances. To overcome these limitations we decided to add two additional
axes to the gripper that allow motion in 3 dimensions. The linear axes are driven
by stepper motors which allow an accuracy in the range of a tenth of a millimeter.
In addition to the 3 stepper motors for the linear axes another one is added to
open and close the gripper fingers.

Fig. 3. New gripper with 3 linear
axes and 3d printed fingers

To keep costs as low as possible, the con-
troller of the stepper motors consists of an Ar-
duino Uno with an appropriate CNC milling
electronics board. This Arduino shield han-
dles up to 4 stepper motors. Particularly it
has 2 pins for each stepper, one for the mo-
tion direction and another to trigger a step.
The resulting force that the steppers have to
apply is very low. However, to make sure that
we do not lose steps while moving we apply
an accelerated motion for each stepper motor.

We also replaced the Festo flex fingers by
stiff, 3D-printed fingers. The advantage of the
new fingers is mainly that they are not as
wide, which reduced the risk of colliding with
the machine output sensors, a common prob-
lem of the previous years.

2.3 Architecture and Middleware

The software system of the Carologistics robots combines two different middle-
wares, Fawkes [10] and ROS [11]. This allows us to use software components
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Fig. 4. Components communicate state data via interfaces stored in the blackboard.
Commands and instructions are send as messages. Communication is universally shared
among functional plugins and behavioral components [10].

from both systems. The overall system, however, is integrated using Fawkes.
Adapter plugins connect the systems, for example to use ROS’ 3D visualiza-
tion capabilities. The overall software structure is inspired by the three-layer
architecture paradigm [12]. It consists of a deliberative layer for high-level rea-
soning, a reactive execution layer for breaking down high-level commands and
monitoring their execution, and a feedback control layer for hardware access and
functional components. The lowest layer is described in Section 3. The upper two
layers are detailed in Section 4. The communication between single components
– implemented as plugins – is realized by a hybrid blackboard and messaging
approach [10]. This allows for information exchange between arbitrary compo-
nents. As shown in Figure 4, information is written to or read from interfaces,
each carrying certain information, e.g. sensor data or motor control, but also
more abstract information like the position of an object. The information flow
is somewhat restricted – by design – in so far as only one component can write
to an interface. Reading, however, is possible for an arbitrary number of com-
ponents. This approach has proven to avoid race conditions when for example
different components try to instruct another component at the same time. The
principle is that the interface is used by a component to provide state informa-
tion. Instructions and commands are sent as messages. Then, multiple conflicting
commands can be detected or they can be executed in sequence or in parallel,
depending on the nature of the commands.

3 Advances to Functional Software Components

A plethora of different software components is required for a multi-robot sys-
tem. In this section, we focus on changes for this year’s competition, namely
improvements on the MPS detection, a new path planning module and a revised
conveyor belt detection.

3.1 MPS Detection and Approaching

We use a combination of tag detection and line fitting on the laser data to detect
and approach an MPS. In a first step, the tag on the machine is used to validate
whether the robot is approaching the correct machine and to roughly align the



robot to the machine. As the tag vision only gives an imprecise position and
especially rotation of the detected tag, we perform a second alignment step by
searching the laser data for a suitable line, which is then used for a more precise
alignment to the machine.

Markerless Machine Detection As in 2016 and 2017, this year’s technical
challenges will include recognition of the machine type without the use of AR
tags. To do so, we trained an artificial neural network (ANN) with several RGB-
D pictures recorded for each machine during the Robocup 2017. During machine
detection a picture is fed to the ANN, which then calculates a similarity measure
for each possible machine type.

Since some machine types offer very few differentiating features, two thresh-
olds are defined. The first specifies a minimum probability for the best match,
while the second specifies a maximum probability for all other possible matches.
To reach sufficient certainty for a successful report, both thresholds have to be
satisfied for multiple perspectives on a single machine.

3.2 Path Planning

Fig. 5. Robotino on the bottom
right adheres to path from other
Robotino

With the change to the ROS Navigation Stack
(navstack) in 2017 we got a flexible naviga-
tion system for path planning. In general, the
procedure of the navstack is as follows: After
receiving a desired goal, the global planner
tries to find a path with an A*-Search algo-
rithm [13]. The graph for the least-cost search
problem is represented as an occupancy grid
(occ-grid). If the global planner successfully
finds a path it is sent to a controller which
has the task to calculate motion commands
to bring the robot to the goal. As proposed
last year we still make use of the TEB Lo-
cal Planner. The calculated global path is op-
timal with respect to path length. However,
the generated paths only consider static ob-
stacles. The occ-grid representation in the navstack is done with the costmap 2d
package [14]. Updates of the occ-grid represent the static map, obstacles gathered
by the laser scanners and an inflation of the two to set up the configuration space.
As the whole ROS move base approach only plans with the current occ-grid in-
formation it cannot represent dynamic obstacles by default. To overcome this
limitation we share parts of the global paths generated by the robots among each
other. The shared paths from one robot are respected by the other robots with a
simple prioritization paradigm; each robot’s priority is identified by its number
(e.g. 1 for Robotino 1) resulting in a lower priority with a rising number. To
keep the number of software changes low, we decided to add this information to



the occ-grid. We do not need the fully detailed path information but only a few
points representing a rough estimation of the path. Interpolating these allows
us to draw path information as cells of the occ-grid. Figure 5 shows an example
where the bottom right robot used path information from an approaching robot
with a higher priority. The figure shows the protruding path information in front
of the approaching robot.

3.3 Conveyor Belt Detection

The conveyor belts are rather narrow compared to the products and thus re-
quire precise handling. For reliable interaction, the error margin should be less
than 3 mm. For 2018, we are changing the previous method [9] to use a more
descriptive model for detecting the conveyor belt. We continue using an Intel
RealSense F200 camera to detect the vertical front face of the conveyor belt.
However, instead of fitting a plane, we now fit a 3D pointcloud model recorded
from the conveyor belt itself. Much of the state of the art PCL-based method for
6DOF object recognition that is described in [15] is concerned with recognizing
known shapes in an entirely unkown scene.

Fig. 6. Left: Model pointcloud (blue)
roughly aligned to scene (black) based on
initial guess. Right: After running ICP, the
model is aligned to the scene precisely.

In our case we already have an
initial guess that is computed sim-
ply from the MPS’ position relative
to the robot (cf. Section 3.1) and the
approximate position of the conveyor
belt on the MPS. This initial guess is
sufficiently precise (e . 1 cm) to run
an Iterative Closest Point (ICP) algo-
rithm5 that reliably reduces the error
to less than 2 mm.

Among the termination criteria of
ICP is the length of the last incre-
mental transform. This criterion is
watched, and if it is undercut, we reduce the correspondence threshold to al-
low ICP to ignore more model points that might not have a corresponding point
in the scene due to self-occlusion (e.g. as it happens when viewing from a differ-
ent angle than the model was recorded from). However this allows the algorithm
to degenerate to a bad fit where only a small portion of the model points have
close correspondences, while the majority is ignored. Consequentially, the last
step of performing hypothesis verification is essential. For this purpose, we are
currently evaluating the RANSAC-based algorithm proposed by [16].

5 http://pointclouds.org/documentation/tutorials/iterative_closest_point.
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4 High-level Decision Making and Task Coordination
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Fig. 7. Behavior Layer Separation [6]

The behavior generating compo-
nents are separated into three lay-
ers, as depicted in Figure 7: the
low-level processing for percep-
tion and actuation, a mid-level re-
active layer, and a high-level rea-
soning layer. The layers are com-
bined following an adapted hybrid
deliberative-reactive coordination
paradigm.

The robot group needs to cooperate on its tasks, that is, the robots commu-
nicate information about their current intentions, acquire exclusive control over
resources like machines, and share their beliefs about the current state of the
environment. Currently, we employ a distributed, local-scope, and incremental
reasoning approach [7]. This means that each robot determines only its own ac-
tion (local scope) to perform next (incremental) and coordinates with the others
through communication (distributed), as opposed to a central instance which
plans globally for all robots at the same time or for multi-step plans.

In the following we describe the reactive and deliberative layers of the be-
havior components. For computational and energy efficiency, the behavior com-
ponents need also to coordinate activation of the lower level components.

4.1 Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [17]. It
serves as the reactive layer to interface between the low- and high-level systems.
The BE is based on hybrid state machines (HSM). They can be depicted as a
directed graph with nodes representing states for action execution, and/or moni-
toring of actuation, perception, and internal state. Edges denote jump conditions
implemented as Boolean functions. For the active state of a state machine, all
outgoing conditions are evaluated, typically at about 15 Hz. If a condition fires,
the active state is changed to the target node of the edge. A table of variables
holds information like the world model, for example storing numeric values for
object positions. It remedies typical problems of state machines like fast growing
number of states or variable data passing from one state to another. Skills are
implemented using the light-weight, extensible scripting language Lua.

4.2 Robot Memory

In sufficiently complex robotics domains, we typically observe some degree of
code duplication when common (e.g. geometric) operations are required at dif-
ferent levels of the framework. These operations typically revolve around an
intermediate, factual knowledge level that consists of processed sensory infor-
mation and agent execution state, often termed world model. This world model



is now synchronized between robots by the generic fact representation engine
Robot Memory [18], which is based on MongoDB. The MongoDB back-end pro-
vides an easy way to gracefully handle robot failover and reduce network traffic
through incremental updates. In addition to world model synchronization, it
also provides the means for multi-robot coordination by serving as a back-end
for resource locking.

4.3 Reasoning and Planning

The problem at hand with its intertwined world model updating and execution
naturally lends itself to a representation as a fact base with update rules for
triggering behavior for certain beliefs.

Based on the experience from previous years [6], we implemented an agent for
the RCLL based on the CLIPS Executive (CX) [19,20] which uses an extended
and adapted goal lifecycle (cf. [21,22]) to define the control flow. The CX provides
an explicit representation of the agent’s world model, and its goals, plans, and
actions. It separates the domain model with the available operators, predicates,
and known facts from the execution model, which enhances the domain model
by features that are only relevant for the execution of the plan, e.g., exogenous
actions and sensed predicates. In contrast to the approaches described in [19,20],
we currently do not use a planner, but instead use pre-defined plans.

4.4 Multi-Robot Coordination

The CX also provides means for multi-robot coordination, in particular resource
locking. In comparison to our previous approaches to task coordination, we now
use resources that are more closely connected to real-world objects. Instead of
locking a particular task, we lock the MPS and the work piece required for
that task. A resource lock can be tied to a goal, in which case all locks are
released after a goal has finished. As an example, before delivering a product,
the respective order is locked by the goal, because the goal will fulfill the order.
In a different case, a lock is acquired and released with explicit lock and unlock
actions within a plan. As an example, before an agent interacts with an MPS, it
acquires the lock for the MPS, and directly releases the lock after the interaction.
This allows tight coordination of multiple agents, e.g., two robots may use the
same MPS right after each other. In addition to resource locks, we also use
location locks to avoid two robots being in the same location. Similar to the
locks described above, a location lock is acquired with an explicit lock action.
However, for releasing the lock, we use distance-based unlocking, i.e., the location
lock is only released if the robot reached a certain distance to the location.



4.5 Multi-robot Simulation in Gazebo

Fig. 8. Simulation of the RCLL
2015 with MPS stations [7].

The character of the RCLL game emphasizes
research and application of methods for effi-
cient planning, scheduling, and reasoning on
the optimal work order of production pro-
cesses handled by a group of robots. An as-
pect that distinctly separates this league from
others is that the environment itself acts as
an agent by posting orders and controlling
the machines’ reactions. This is what we call
environment agency. Naturally, dynamic sce-
narios for autonomous mobile robots are complex challenges in general, and in
particular if multiple competing agents are involved. In the RCLL, the large
playing field and material costs are prohibitive for teams to set up a complete
scenario for testing, let alone to have two teams of robots. Additionally, mem-
bers of related communities like planning and reasoning might not want to deal
with the full software and system complexity. Still they often welcome relevant
scenarios to test and present their research. Therefore, we have created an open
simulation environment [23,24] based on Gazebo6.

This year, we extended the simulation with several error scenarios to test
our agent’s execution monitoring. The simulation now supports random failures
during picking and putting, and it also lets the gripper drop the puck randomly.
Additionally, it simulates systematic errors of an MPS, e.g., a cap station that
always breaks during any interaction for a certain period of time. This way, we
we were able to test the behavior of our agent in many scenarios that we have
not encountered in a real-world game before.

5 League Advancements and Continued Involvement

We have been active members of the Technical and Executive Committees and
proposed various changes for the league [4,5]. Additionally, we introduced and
currently maintain the autonomous referee box for the competition and develop
the open simulation environment described above.

5.1 Public Release of Full Software Stack

Over the past ten years, we have developed the Fawkes Robot Software Frame-
work [10] as a robust foundation to deal with the challenges of robotics appli-
cations in general, and in the context of RoboCup in particular. It has been
developed and used in the Middle-Size [25] and Standard Platform [26] soc-
cer leagues, the RoboCup@Home [27,28] service robot league, and now in the
RoboCup Logistics League [24].

6 More information, media, the software itself, and documentation are available at
http://www.fawkesrobotics.org/projects/llsf-sim/
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The Carologistics are the first team in the RCLL to publicly release their
software stack. Teams in other leagues have made similar releases before. What
makes ours unique is that it provides a complete and ready-to-run package with
the full software (and some additions and fixes) that we used in the competition
in 2014 till 2016. This in particular includes the complete task-level executive
component of 2014 and 2015, that is the strategic decision making and behavior
generating software. This component was typically held back or only released
in small parts in previous software releases by other teams (for any league). We
plan to do a similar software release after RoboCup 2018.

In addition to our software stack, we aim to release all our modifications
to other software components. This includes a set of RCLL ROS packages7,
modifications of the ROS navigation stack8, and a port of the tag tracking library
Alvar to OpenCV39. Furthermore, we package third-party libraries such as the
Point Cloud Library (PCL) and the RealSense camera driver for the open-source
operating system Fedora to allow easy installation of our software stack. We also
maintain Fedora packages for the full ROS stack10, including desktop full,
move base, and moveit.

5.2 Planning Competition for Logistics Robots in Simulation

The first Planning and Execution Competition for Logistics Robots In Simula-
tion11 was held at the last year’s International Conference on Automated Plan-
ning and Scheduling (ICAPS’17). In the simulation competition, the challenge is
to efficiently plan in short time with dynamic orders and temporal constraints,
and to provide an effective executive for multi-robot plans. The competition is
based on the simulation developed by the Carologistics team, which has been
extended to be able to run in a cluster or cloud-computing setup. The idea is
to foster collaboration and exchange among the planning and robotics commu-
nities. Our team competed came in second place with an agent different to the
agent used at RoboCup and based on OpenPRS [29]. The agent is described in
more detail in [30].

6 Conclusion

In 2018, we developed a new agent based on the CLIPS Executive that provides
an explicit goal representation including plans and actions with their precondi-
tions and effects, and with a resource locking mechanism based on Robot Mem-
ory. We replaced our gripper with three linear axes and thus with three degrees
of freedom that allows precise grasping without moving the Robotino base. We
implemented a new conveyor vision component based on Iterative Closest Point

7 https://github.com/timn/ros-rcll_ros
8 https://github.com/nlimpert/navigation
9 https://github.com/morxa/alvar

10 https://copr.fedorainfracloud.org/coprs/thofmann/ros/
11 http://www.robocup-logistics.org/sim-comp
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(ICP) which uses a model of the conveyor belt to allow for a more precise detec-
tion. We augmented our path planning with velocity sharing to include the other
robots’ motions for planning to reduce travelling time while avoiding collisions
with robots of our own team.

The website of the Carologistics RoboCup Team with further information
and media can be found at http://www.carologistics.org.
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